U-07

Picosecond X-ray Science

Linda Young¹, Paul G. Evans², Klaus Attenkofer¹, Mark Beno¹, Lin X. Chen^{1, 3}, Roy Clarke⁴, Eric M. Dufresne¹, Yuelin Li¹, David Reis⁴, Stephen Southworth¹, and David Tiede¹

¹Argonne National Laboratory, Argonne, IL 60439 ²University of Wisconsin, Madison, WI 53705

The Short Pulse X-ray (SPX) facility will extend time-resolved x-ray scattering and spectroscopy to the picosecond timescale while retaining the powerful characteristics of synchrotron radiation, i.e., user-controlled continuous tunability of energy, polarization, and bandwidth combined with exquisite x-ray energy and pulse length stability over a wide energy range. Experiments at the SPX facility will produce one-picosecond stroboscopic snapshots of molecular rotations, molecular excited-state transient structures, stress/strain wave propagation, magnetic domain wall dynamics, phase transitions, and the coupling between electronic, vibrational, and magnetic degrees of freedom in condensed matter systems. Time-resolved studies of transient dynamics will be possible with simultaneous picosecond time resolution and picometer structural precision for a variety of atomic, molecular, supramolecular, nanoscale, and bulk material systems. Transformational developments are now taking place in high-average-power pulsed laser technology, with substantially increased repetition rates that promise to make highly efficient use of the MHz x-ray repetition rates of the SPX. We propose to develop, in the context of the APS Upgrade, five end stations with scattering, diffraction, spectroscopy, imaging, and microscopy capabilities.

³Northwestern University, Evanston, IL 60208

⁴University of Michigan, Ann Arbor, MI 48109

⁵Stanford University, Palo Alto, CA 94305